Sma
R Cheat Sheet: Writing Functions l

Functions in R are called closures. Function environment
Don't be deceived by the curly brackets: # When a function is called a new
R is much more like Lisp than C or Java. # environment (frame) is created for it.
Defining problems in terms of function # These frames are found in the call stack
calls and their lazy, delayed evaluation # First frame is the global environment
(variable resolution) is R's big feature. # Next fn reaches back into the call stack

Standard form (for named functions) called.by <- function() { # returns string
plus <- function(x, y) { x + y } # technically: who is my grandparent?
plus(5, 6) # -> 11 if(length(sys.parents()) <= 2)
return() not needed - |last value returned return('.GlobalEnv')
Optional curly brackets with 1-line fns: deparse(sys.call(sys.parent(2)))
x.to.y <- function(x, y) return(x A y) } # Note: designed to be called from a fn
g <- function(...) { called.by() }
Returning values f <- function(...) g(...); f(a, 2)
return() - can use to aid readability and
for exit part way through a function Variable scope and unbound variables
invisible() - return values that do not # Within a function, variables are
print if not assigned. # resolved in the local frame first,
Traps: return() is a function, not a # then in terms of super-functions (when a
— # statement. The brackets are needed. # function is defined inside a function),
then in terms of the global environment.
Anonymous functions h <- function(x) { x + a } # a undefined
Often used in arguments to functions: a <- 5 # a defined in global environment
v <- 1:9; cube <- sapply(v,function(x) xA3) h(5) # -> returns 10
k <- function(x) { a <- 100; h(x) }
Arguments are passed by value k(10) # -> returns 15
Effectively arguments are copied, and any # Note: local a in k() not seen in h()
changes made to the argument within the # variables not defined by the call stack!
function do not affect the caller's copy. # [See my cheat sheet on R Environments]
Trap: arguments are not typed and your
function could be passed anything! Super assignment <<-
Upfront argument checking advised! # x <<- y ignores the local x, and looks up
the super-environments for a x to replace
Arguments passed by position or name accumulator <- function() {
b <- function(cat, dog, cow) cat+ dog+ cow a <- 0 # super assignment finds this a
b(1, 2, 3) # cat=1, dog=2, cow=3 function (x) {
b(cow=3, cat=1, dog=2) # order no problem a <<- a + x # the super assignment
b(co=3, d=2, ca=1) # unique abbreviations a # alone: this a will be printed
Trap: not all arguments need be passed } # NOTE: anonymous function returned
f <- function(x) missing(x); f(); f('here') } # when accumulator() is called !!!
~ # match.arg() - argument partial matching acc <- accumulator() # create accumulator
acc(1); acc(5); acc(2) # prints: 1,6, 8
Default arguments
Default arguments can be specified. Eg. Operator and replacement functions
x2y.1 <- function(x,y =2) {x Ay} "+ (4, 5) # -> 9 - operators are just fns
x2y.2 <- function(x,y = x) {x Ay} %plus%’ <- function(a, b) {a + b}
x2y.2(3); x2y.2(2, 3) # -> 27 8 3 %plus®h 2 # -> 5 # new defined functions
"FUN(X) <- v is parsed as: x <- FUN(x, V)
The dots argument (...) is a catch-all "cap<-" <- function(x, value) # must use
f <- function (...) { ifelse(x > value, value, x) # 'value'
simple way to access dots arguments x <- ¢(1,10,100); cap(x) <- 9 # x -> 1,9,9
dots <- list(...) # return list
} Exceptions
x <- f(5); dput(x) # -> 5 (in a list) tryCatch(print('pass'), error=function(e)
g <- function (...) { print('bad'), finally=print(‘done'))
dots <- substitute(list(...))[-1] tryCatch(stop('fail'), error=function(e)
dots.names <- sapply(dots, deparse) print('bad’), finally=print('done'))
}
X <- g(a, b, c); dput(x)# -> c("a","b","c") Useful language reflection functions
dots can be passed to another function: # exists(); get(); assign() — for variables
h <- function(x, ...) g(...) # substitute(); bquote(); eval(); do.call()
X <- h(a, b, c); dput(x) # -> c("b", "c") # parse(); deparse(); quote(); enquote()

